N.B.: (1) Q1. is compulsory, attempt any 3 questions out of remaining six questions
(2) Assume any necessary data to justify the same
(3) Figures to the right indicate full marks
(4) Use of scientific calculator is allowed

Q1	b)	Without using truth table prove $(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{R} \rightarrow \mathrm{Q}) \equiv(\mathrm{P} V \mathrm{R}) \rightarrow \mathrm{Q}$	(05)
$\begin{aligned} & \text { SOLN } \\ & \text { LHS : }(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{R} \rightarrow \mathrm{Q}) \\ & \equiv(\sim \mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{R} \vee \mathrm{Q}) \\ & \equiv(\mathrm{Q} \vee \sim \mathrm{P}) \wedge(\mathrm{QV} \sim \mathrm{R}) \\ & \equiv \mathrm{Q} \vee(\sim \mathrm{P} \wedge \sim \mathrm{R}) \\ & \equiv \mathrm{Q} \vee \sim(\mathrm{P} \vee \mathrm{R}) \\ & \equiv \sim(\mathrm{P} \vee \mathrm{R}) \vee \mathrm{Q} \\ & \equiv(\mathrm{P} \vee \mathrm{R}) \rightarrow \mathrm{Q} \quad=\mathrm{RHS} \end{aligned}$			
Q1	c)	What are the characteristics of a complex business problem, explain any two	(05)
SOLN Characteristics Of Complex Business Problems: - The number of possible solutions is so large that it precludes a complete search for the best answer. - Problem exists in a time changing environment. - The problem is heavily constrained. - There are many (Possibly conflicting) objectives. - Other characteristics are incomplete information, noisy data and uncertainly. Any two of above points needs to be explained			

KEY DMMM MAY 2017: QP code 09903 (80 MARKS) MCA SEM - II - CHOICE BASED

SOLN
Step1) Find weights for Relative (Criteria Vs Criteria)

	EXPERIENCE	EDUCATION	CHARISMA	AGE
EXPERIENCE	1	4	3	7
EDUCATION	$1 / 4$	1	$1 / 3$	3
CHARISMA	$1 / 3$	3	1	5
AGE	$1 / 7$	$1 / 3$	$1 / 5$	1
sum	1.726	8.333	4.533	16

Divide every element by column sum and then take row average

	EXPERIENCE	EDUCATION	CHARISMA	AGE	Row average wt or eigen v
EXPERIENCE	0.579	0.48	0.662	0.438	$\mathbf{0 . 5 4}$
EDUCATION	0.145	0.12	0.074	0.188	$\mathbf{0 . 1 3 2}$
CHARISMA	0.193	0.36	0.221	0.313	$\mathbf{0 . 2 7 2}$
AGE	0.083	0.04	0.044	0.063	$\mathbf{0 . 0 5 8}$

KEY DMMM MAY 2017: QP code 09903 (80 MARKS) MCA SEM - II - CHOICE BASED

Step2) Find Weights of each of the Critera (Alternative Vs Alternative)

EXPERIENCE	TOM	DICK	HARRY
TOM	1	$1 / 4$	4
DICK	4	1	9
HARRY	$1 / 4$	$1 / 9$	1
sum	5.25	1.361	14

Divide every ele by column sum \& then take row avg

EXPERIENCE	TOM	DICK	HARRY	Row average wt or eigen v
TOM	0.19	0.184	0.286	$\mathbf{0 . 2 2}$
DICK	0.762	0.735	0.643	$\mathbf{0 . 7 1 3}$
HARRY	0.048	0.082	0.071	$\mathbf{0 . 0 6 7}$

EDUCATION	TOM	DICK	HARRY
TOM	1	3	$1 / 5$
DICK	$1 / 3$	1	$1 / 7$
HARRY	5	7	1
sum	6.333	11	1.343

Divide every ele by column sum \& then take row avg

EDUCATION	TOM	DICK	HARRY	Row average wt or eigen v
TOM	0.158	0.273	0.149	$\mathbf{0 . 1 9 3}$
DICK	0.053	0.091	0.106	$\mathbf{0 . 0 8 3}$
HARRY	0.79	0.636	0.745	$\mathbf{0 . 7 2 4}$

CHARISMA	TOM	DICK	HARRY
TOM	1	5	9
DICK	$1 / 5$	1	4
HARRY	$1 / 9$	$1 / 4$	1
sum	1.311	6.25	14

Divide every ele by column sum \& then take row avg

CHARISMA	TOM	DICK	HARRY	Row average wt or eigen v
TOM	0.763	0.8	0.643	$\mathbf{0 . 7 3 5}$
DICK	0.153	0.16	0.286	$\mathbf{0 . 2}$
HARRY	0.085	0.04	0.071	$\mathbf{0 . 0 6 5}$

AGE	TOM	DICK	HARRY
TOM	1	$1 / 3$	5
DICK	3	1	9
HARRY	$1 / 5$	$1 / 9$	1
sum	4.2	1.444	15

Divide every ele by column sum \& then take row avg

	TOM	DICK	HARRY	Row average wt or eigen v
AGE	TOM	0.238	0.231	0.333
TOM	$\mathbf{0 . 2 6 7}$			
DICK	0.714	0.693	0.6	$\mathbf{0 . 6 6 9}$
HARRY	0.048	0.077	0.067	$\mathbf{0 . 0 6 4}$

Step3)
The composite impact table

WEIGHTS	0.54	0.132	0.272	0.058
Criteria -->	EXPERIENCE	EDUCATION	CHARISMA	AGE
TOM	0.22	0.193	0.735	0.267
DICK	0.713	0.083	0.2	0.669
HARRY	0.067	0.723	0.065	0.064

Composite impact of $\mathrm{TOM}=0.359$,
Composite impact of DICK $=0.489$,
Composite impact of $\mathrm{HARRY}=0.153$.
Best composite score is : 0.489 , Best Alternative is to choose DICK

KEY DMMM MAY 2017: QP code 09903 (80 MARKS) MCA SEM - II - CHOICE BASED

Q2	b)	Use Mathematical induction to prove the property P(n) $\mathrm{P}(\mathrm{n}): 3^{\mathrm{n}}+2 \mathrm{n}-1$ is divisible by $4 \forall \mathrm{n} \in \mathrm{N}$						(05)
SOLN $P(1)$ is true, Assume $P(k)$ is true $=>3^{k}+2 k-1$ Claim : $\mathrm{P}(\mathrm{k}+1)$ is true i.e. $3^{\mathrm{k}+1}+2(\mathrm{k}+1)-1$ is divisible by $4,3^{\mathrm{k}}+2 \mathrm{k}-1$ is divisible by 4 Further solving we get $3^{\mathrm{k}+1}+2(\mathrm{k}+1)-1=4 \mathrm{~m}$ for some integer m $=$ RHS. Hence proved								
Q3	a)	Use SAW Durability The meas	method to de in years and R res for differ MAINTANCE COST in Rs.	termine the bes esale value , othe nt criteria are gi	st car. The be ers are non bene ven in the table DURABILITY IN YEARS 6.5 10 10 DURABILITY IN YEARS 0.25	eficiar iciary elow RESAL	criteria are riteria	(10)
Sum of Weights is 1 , Already Normalized As Durability in years and Resale value are Beneficiary and Maintenance cost and Resale Value are Non beneficiary, we need to normalize the measures								
Weight			0.15	0.4	0.25		0.2	
Cri_typ			-	-	+		+	
		MAINT	ANCE COST in Rs.	Purchase PRICE IN Rs.	DURABILITY YEARS		$\underset{\text { Res. }}{\text { Rese }}$	
CAR1			800	350000	6.5		100000	
CAR2			1000	1000000	10		450000	
CAR3			1250	650000	10		290000	
After Normalizing,								
Weight			. 15	0.4	0.25		0.2	
		MAINT	NCE COST in Rs.	Purchase PRICE IN Rs.	DURABILITY IN	YEARS	RESALE VALUE Rs.	
CAR1			1	1	0.65		0.222	
CAR2			0.8	0.35	1		1	
CAR3			0.64	0.538	1		0.644	
Performance scores are $\mathrm{P}(\mathrm{CAR} 1)=0.76, \mathrm{P}(\mathrm{CAR} 2)=0.71, \mathrm{P}(\mathrm{CAR} 3)=0.69$ THE DECISION IS TO CHOOSE THE CAR1								

